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C onsumer demand for positioning 
information is currently being 
met by a plethora of wireless posi-
tioning technologies. The most 

popular consumer positioning tech-
nology, GNSS, is only one option along  
with several methods that use cellular 
networks to provide location, such as 
wireless local area networks (WLANs), 
wireless personal area networks 
(WPANs), radio frequency identification 
(RFID) tags, and ultrawideband (UWB) 
communications.

Although GNSS, WLAN (e.g., 
Wi-Fi), and WPAN (e.g., Bluetooth) have 
become common technologies, their 

navigation performance does not yet 
enable ubiquitous navigation systems. 
Wireless systems provide absolute posi-
tioning information, but when signal 
reception is unreliable or becomes inac-
curate due to multipath, interference, 
or signal blockage, backup systems are 
needed. 

Inertial sensors have been used in 
many high-end military, industrial, 
survey and enterprise machine guid-
ance systems for several decades, and 
especially within INS/GPS systems 
using fiber-optic gyroscope (FOG) or 
ring laser gyroscope (RLG) technology. 
These systems are extremely accurate 
and reliable, but their cost, size, and 
power requirements exclude them from 
the personal navigation market, which 
has turned to wireless positioning  
technologies.

Wireless positioning technologies 
can make use of received signal strength 
(RSS), time of flight (TOF), and angle of 
arrival (AOA) to calculate a location 
using one of four common geometric 
arrangements. TOF, including both time 
of arrival and time difference of arrival, 
and AOA use multiple points of signal 
transmission to find a target location. 

Examples of such methods include 
cell tower trilateration and Wi-Fi posi-
tioning from router access points. If a 
single terminal can perform both direc-
tion finding and distance measurement 
then it can be used by itself to determine 
the location of a target, which is the 
fourth method.

The location estimate of these wire-
less techniques typically depends on the 
measurement of the time of flight (TOF) 
between a transmitter and receiver, 
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or through use of the received signal 
strength (RSS). RSS accuracy is usually 
worse than that of TOF due to inter-
ference and multipath created by local 
environments, especially indoors or 
in urban environments. TOF methods 
can be more accurate, but they require 
additional hardware for timing and syn-
chronization between a transmitter and 
a receiver.

Simplistic methods place the location 
of the target at the location of the nearest 
terminal; so, the accuracy of these meth-
ods depends on the proximity of the tar-
get to the terminal. These methods are 
often a first step towards a more complex 
TOF or RSS calculation of the location.

Regardless of the wireless position-
ing method, all of these techniques suf-
fer from local interference, multipath, or 
time synchronization errors. Urban and 
indoor environments further challenge 
the utility of these wireless methods due 
to inaccurate TOF or RSS measurements. 

 The line-of-sight problem has 
plagued navigators for hundreds of 
years, from clouds blocking their view 
of the stars to buildings blocking a direct 
path for satellite signals. The age-old 
remedy has been the augmentation of 
the primary navigation technology by 
integrating other sensors to help deter-
mine the navigation solution in such 
scenarios.

MEMS Sensor Constraints
Wireless positioning methods are cru-
cial in any consumer navigation system, 
but when the wireless methods cannot 
operate or when the wireless system 
accuracy is very poor, other comple-
mentary sensors are used to aid in the 
solution. 

Motion sensors, such as accelerom-
eters and gyroscopes, are capable of 
tracking relative position, velocity, and 
orientation changes with respect to a 
previous position, velocity and orienta-
tion — a technique generally known as 
dead reckoning. The accumulation, or 
integration, of the relative motions over 
time allows the navigation solution to  
be extended from a previous known 
position.

Three accelerometers and three gyro-
scopes comprise an inertial measure-
ment unit (IMU). An IMU is capable 
of extending position estimates beyond 
wireless positioning capabilities and 
can also provide orientation estimates. 
In fact, one of the first mainstream con-
sumer applications, interactive games 
on handheld devices use these low-cost 
motion sensors to provide feedback to 
the gamer via the screen, as part of the 
game.

Currently, all commercial low-cost 
inertial sensors use MEMS, which have 
been investigated for navigation purpos-
es by many researchers. Mechanization 
is a common method of integrating the 
specific forces and angular rates output 

from MEMS IMU’s. Mechanization 
transforms these measurements through 
calculations to a coordinate frame of 
reference, such as a local level frame or 
navigation frame. A typical mechaniza-
tion architecture is shown in Figure 1.

MEMS are challenging when used in 
a conventional mechanization because 
of their large errors, extreme stochastic 
variances and quickly changing error 
characteristics. equation 1 relates sev-
eral inertial error parameters to accu-
mulated position error in the horizontal 
plane, as a function of time. The inertial 
parameters include mechanization and 
filter prediction without absolute GNSS 
updates, over a period of time repre-
sented by Δt.

The terms in this equation are defined as:
δp(t) the positional error drift after time t
δp(t0) the initial position error at the start of the GNSS signal outage
δv(t0) the initial velocity error at the start of the GNSS signal outage
Δt the time difference between the start of the GNSS signal outage and the cur-

rent time
δba(t0) the accelerometer offset bias at the beginning of the GNSS signal outage
δbg(t0) the gyroscope offset bias at the beginning of the GNSS signal outage
g the local gravity constant
δqr,p(t0) the non-orthogonality error due to roll or pitch errors at the beginning of the 

GNSS signal outage
δqA(t0) the non-orthogonality error due to azimuth errors at the beginning of the 

GNSS signal outage
V the average velocity during the GNSS signal outage
δSFa(t0) the accelerometer scale factor error at the beginning of the GNSS signal outage 

in specific force [m/s2]
δSFg(t0) the gyroscope scale factor error at the beginning of the GNSS signal outage 

[rad/s]

FIGURE 1  INS mechanization in the local level frame (after E. H. Shin, 2005)
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Equation 1 indicates that residual 
gyroscope errors create the largest 
positional drifts with respect to time, 
because they are multiplied by the cube 
of the GNSS signal outage interval. 

To provide some insight, a typical 
consumer-grade MEMS gyroscope bias 
error of 0.01 degrees per second, induc-
es a position drift error of 62 meters 

during a one-minute interval without 
GNSS updates. Equation 1 assumes that 
the gyroscope bias error is fixed and 
unchanging throughout the outage; how-
ever, this is not always the case, especially 
for longer GNSS signal outages. 

Many MEMS inertial gyroscopes 
have in-run bias stabilities in the range 
of 0.003 to 0.03 degrees per second. 

Without absolute updates to estimate the 
gyroscope bias changes, the gyroscope 
bias errors could quickly drift and domi-
nate the position error contribution. 

Several numerical methods have 
been developed to constrain the rapid 
accumulation of biases during filter 
prediction. Some methods constrain the 
platform motion, which is often vehicu-
lar or walking for consumer applica-
tions. Other methods include nonlinear 
estimation of the errors to provide bet-
ter accuracy and less accumulation over 
time. The advantage of the nonlinear 
techniques is best seen during GNSS sig-
nal outages of several minutes or more.

Detection of static periods and appli-
cation of zero velocity updates can con-
strain the error growth during periods 
of no motion. If both accelerometers and 
gyroscopes are used to detect static peri-
ods, such as described in the paper by I. 
Skog listed in the Additional Resources 
section near the end of this article, then 
heading constraints, such as zero inte-
grated heading response, can also be 
applied during static period.

When a platform is moving, other 
constraints can be applied, such as non-
holonomic constraints (NHCs). NHCs 
limit the velocity in the lateral and verti-
cal directions and can be used for both 
pedestrian and vehicular applications. 
NHCs must be applied with care, due 
to their strength, or standard deviation, 
which should adjust adaptively based on 
the dynamics and alignment accuracy of 
the device frame to the platform frame, 
as well as the mode of conveyance.

The NHC is simply a zero velocity 
update along the lateral and vertical axes 
of the platform:

where
b = device frame
y = lateral component of the velocity
z = vertical component of the velocity

The velocity has to be converted into 
the platform frame to apply NHCs; so, 
the alignment of the device frame to the 
platform frame is very important.

Pedestrian dead reckoning (PDR) is 

EvErywhErE navigation
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also commonly used to obtain or con-
strain position when the mode of con-
veyance is detected as walking. PDR is 
used to approximate horizontal move-
ment of a person by detecting steps, 
estimating stride length, and approxi-
mating the distance moved based on a 
heading estimate from an attitude and 
heading reference system (AHRS) that 
typically comes from the mechanization 
of the inertial measurements. PDR relies 
on knowledge of the platform heading, 
which could differ from that of the 
device; so, care has to be taken when 
applying these updates or constraints. 

Other sensors, such as magnetome-
ters and barometers, may also be used to 
constrain the inertial solution drift dur-
ing prediction. Properly calibrated mag-
netometers can constrain the heading 
drift within several degrees, but they are 
subject to distortion caused by magnetic 
effects. Calibration for hard-iron effects 
is a challenging problem on its own, and 
magnetometers also face short-term soft-
iron effects that can temporarily cause 
the magnetometer to output entirely 
wrong readings. 

Hard-iron distortions stem from 
permanent magnets or magnetized 
material on the compass platform. 
Consequently, these effects remain the 
same and in a fixed location relative to 
the compass regardless of orientation. 
Hard iron effects are often very apparent 
within vehicles, and their effect has to 
be removed before a magnetometer can 
be used for navigation in such an envi-
ronment. Soft-iron distortions reflect 

the effects of the Earth’s magnetic field 
on any magnetically soft material sur-
rounding the compass.

Filtering techniques do exist that can 
use the magnetometer and gyroscope 
readings to detect and reject errone-
ous readings, if their time correlation is 
short. Once properly calibrated and fil-
tered, magnetometers can provide abso-
lute device heading estimates to within 
a few degrees.

Barometers also can be used to help 
with altitude estimation and for mul-
tipath mitigation of erroneous wireless 
signals, especially for GNSS. Barometers 
suffer from bias offsets and longer term 
drifts, but their relative height accuracy 
during periods of several minutes can be 
better than 20 centimeters. 

GNSS can be used to calibrate the 
bias offset while a Gauss Markov pro-
cess can be used to estimate the accu-
racy of the barometer bias drift during 
longer term periods without other abso-
lute updates, such as from GNSS. After 
calibration, barometers can be used to 
constrain the height drift and help alle-
viate the effects of GNSS multipath from 
contaminating the navigation solution.

integrated Sensor and 
wireless navigation Filters
The use of traditional mechanization, 
platform updates, and complementary 
sensors, has made stand-alone MEMS 
navigation in consumer devices possible; 
however, the integration of wireless and 
sensor navigation techniques is a more 
desirable solution.

Several methods can be used to inte-
grate wireless positioning techniques 
with inertial sensors. The three common 
methods are loosely coupled, tightly 
coupled, and deeply coupled integration. 
The terms centralized and decentralized 
have also been used to refer to tight and 
loose coupling, respectively.

A loosely coupled architecture is the 
simplest to implement because the iner-
tial and GPS navigation solutions are 
generated independently before being 
weighted together in a separate filter. The 
advantages of the loosely coupled strat-
egy are that the INS errors are bounded 
by the GPS updates, the INS can be used 
to bridge GPS updates, and the GPS can 
be used to help calibrate the determin-
istic parts of the inertial errors online. 

Another advantage is this architec-
ture can be used to integrate existing 
GPS with available inertial systems, such 
as those currently found in vehicles or 
mobile phones, since it does not require 
access to the raw GPS signals. This does 
not alleviate the need for precise timing 
synchronization, but timing synchroni-
zation is a requirement for all wireless/
sensor integrations.

The loosely coupled integration strat-
egy, using position and velocity updates 
from GPS, is shown in Figure 2. P stands 
for position, V for velocity, and A for 
attitude. In this case a Kalman filter is 
used as an example of the fusion filter.

The main drawback to a loosely 
coupled integration strategy is that it 
requires at least four GNSS satellites in 
view to operate in update mode; other-
wise it operates in prediction mode and 
ignores any available signals from fewer 
than four satellites. As MEMS errors 
grow faster in prediction mode, use of 
any GNSS signals present is wise.

 A tightly coupled integration strat-
egy alleviates such constraints by com-
bining the integration process into a sin-
gle filter. Any number of GPS satellites 
can be used as measurements to further 
constrain the inertial error drift.

 The comparison of parameters in a 
tightly coupled filter is different from the 
loosely coupled architecture. Instead of 
comparing positions and velocities, the 
tightly coupled architecture differences 

FIGURE 2  Loosely coupled architecture
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raw GPS pseudorange and Doppler mea-
surements from those predicted by the 
inertial unit. The filter output is a cor-
rection to the inertial outputs as shown 
in the block diagram in Figure 3 and can 
also be fed back to the GPS receiver in 
the form of INS-derived velocity and 
Doppler information to aid the code and 
carrier tracking loops.

Deep integration, in this case, com-
bines measurements into a single filter, 
but combines GPS and inertial data at 
the earliest possible stage. Immediately 
after the RF signal is shifted to some 
lower intermediate frequency (IF), iner-
tial measurements are used. The iner-
tial data is used at this stage to provide 
a dynamic reference trajectory that aids 
the receiver correlators during signal 

integration. Furthermore, a replica GPS 
signal, both code and carrier, can be 
generated by an integrated tracking and 
navigation filter.

The fusion filter does not necessar-
ily have to be a classic Kalman filter, but 
can use more nonlinear filters, such as 
the extended Kalman filter (EKF), the 
unscented Kalman filter (UKF), and 
the particle filter (PF). Each one of these 
filters has increasing ability to estimate 
nonlinear models, whether total state or 
error state. If the motion model is highly 
nonlinear then using a PF will result in 
the best accuracy because of minimal 
truncation and round-off error in the 
estimation. For further discussion about 
filters in integrated navigation systems, 
see the papers by E. H. Shin et alia and J. 

Georgy et alia in Additional Resources.
The integration of vehicle sensors 

can also be used in dedicated consumer 
vehicle navigation systems. Many com-
mercial systems use dead reckoning in 
combination with a single gyroscope 
for heading determination. These dead 
reckoning solutions typically provide 
two-dimensional (2D) position infor-
mation. A loosely or tightly coupled fil-
ter with a full IMU and mechanization 
also can accept platform speed readings, 
such as those from an odometer, which 
update the filter’s velocity estimates.

Our company has achieved tight 
integration of speed readings with 
inertial sensors to provide an accurate 
three-dimensional (3D) navigation solu-
tion. This method decouples the motion 
of the platform from the output of the 
inertial readings of the device. Through 
this decoupling, the positioning solu-
tion during GNSS signal outages is 
significantly improved because the 
dependence of the error on the outage 
duration is highly decreased. 

In this position solution, the error 
due to accelerometer biases and the two 
horizontal gyroscope biases reduces to 
being linearly proportional to the outage 
duration, instead of quadratically pro-
portional to the accelerometer bias, and 
cubically proportional to the horizontal 
gyroscope bias. A minimal configura-
tion of such a system is shown in Figure 
4. This model is nonlinear and preferably 
uses a nonlinear filter, such as a PF, for 
better estimation performance.

The connection of the mobile device 
to the vehicle speed may be through 
typical wired connections, but with 
increasing vehicle wireless connectiv-
ity it is likely that mobile phones may be 
able to receive sensor information from 
the vehicle in the near future. This would 
enable a full suite of products that could 
be freely moving within the vehicle, 
tethered to the dash but movable, or 
simply tethered to the vehicle platform 
and communicating to the vehicle sen-
sors wirelessly.

The use of vehicle speed and decou-
pling is also very useful for estimating 
the orientation of a mobile device with 
respect to the vehicle platform. If this 

EvErywhErE navigation

FIGURE 4  Minimal configuration for tight integration of vehicle sensors with MEMS and GNSS

FIGURE 3  Tightly coupled architecture
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estimation is resolved correctly then 
platform constraints, such as NHC, can 
be applied.

The communication between vehicle 
and mobile device would also enable 
tight integration of map information 
with the vehicle and mobile sensors. 
This helps constrain the solution in 
the harshest of urban environments to 
within one or two traffic lanes using very 
low-cost MEMS sensors.

However, the orientation of a mobile 
device used by a person can freely 
change. This misalignment between 
the device and the person platform, 
and within the vehicle, can be resolved 
through absolute updates using GNSS.

A trade-off often occurs between 
accuracy and real-time iteration effi-
ciency for different types of filters. For 
example, we have designed an imple-
mentation for guidance applications that 
uses an EKF solution with a traditional 
mechanization approach that can oper-
ate in real-time with iteration times less 
than one millisecond on a one gigahertz 
processor. For in-vehicle systems using 
platform speed inputs we have created a 
PF solution, which estimates nonlinear 
models, that has iteration times of about 
10 milliseconds on the same processor.

 The EKF can be used to estimate 
many problems that are just slightly 
nonlinear with only small errors, but 
the PF is needed when the models are 
nonlinear, otherwise the entire purpose 
of using nonlinear modeling will be 
obfuscated by use of a linearized filter. 
This situation is similar to water through 
a pipe: the outflow diameter of a pipe has 
to be the same size or larger than the 
inflow to ensure continuous through-
put of water. 

Many different integration models 
exist; the designer of the model should 
carefully choose the most appropriate 
filter based on iteration time, system/
measurement models, and accuracy 
requirements of the final system.

MEMS improvements 
to wireless real-time 
navigation
Most commercially available real-time 
wireless positioning and navigation sys-

tems rely on a combination of wireless 
methods for positioning. These wireless 
methods work well in clear signal propa-
gation areas, but suffer from availability 
and inaccuracy in urban and indoor 
areas. To combat the availability prob-
lem, GNSS manufacturers use high-sen-
sitivity receivers to accept more signals, 
which can lead to decreased accuracy. 

In order to illustrate this problem, 
Figure 5 shows the results of a field trial 
with commercially available GNSS 
receivers performed in downtown Tai-
pei where a person walked down a street, 
entered a 13-story building, and walked 
around inside. The GPS-only solution 
is shown as a path (left panel) and as 

points (right panel) to demonstrate the 
multipath and availability problems. 
This GPS receiver had errors of more 
than 80 meters but was able to always 
produce a solution by simply repeating 
the last known position during periods 
of complete signal blockage.

Figure 6 shows the results from a field 
trial along the same Taipei course using 
an integrated solution in which GPS 
was combined with mobile phone grade 
gyroscopes, accelerometers, a 3D mag-
netometer, and a barometer. For illustra-
tion purposes only, the reference path 
was drawn using a mapping application 
and database to emulate the true path. 
For an actual truth reference analysis, 

FIGURE 5  GPS-only results walking in downtown Taipei

FIGURE 6  Comparison of GPS-only (blue) and integrated (red) positioning solutions, with reference 
truth (green) path in downtown Taipei
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we would expect the truth solution to 
be accurate to 10 meters. 

The person’s path through the build-
ing is clear, with distinct turns, in com-
parison with the noisy GPS-only solu-
tion. The integrated solution largely 
rejected the noisy GNSS indoor signal 
and indicates a drift of about 18 meters 
after six minutes indoors. 

The integrated solution also produced 
improved height accuracy in compari-
son to the GPS-only solution. Figure 7 
shows the results of the height from the 
integrated solution (red points) versus 
the GPS-only height (blue points). As 
indicated, GPS was able to make a few 
height measurements on the 12th floor 
because the roof of the building had win-
dows through which the signals could be 
received, but the remainder of the GPS 
heights had errors of 20 to 40 meters.

wi-Fi integrated with 
Sensors
GPS is not the only absolute wireless posi-
tioning method that has gained main-
stream popularity. Wi-Fi positioning 
systems are also quite prevalent in exist-
ing consumer devices. Figure 8 shows an 
indoor Wi-Fi positioning solution repre-
sented by the yellow pins. The Wi-Fi solu-
tion was further integrated with a MEMS 
IMU carried in a backpack by a person 
while walking through two buildings.

The Wi-Fi solution was available 
35 percent of the time and had errors 
greater than 30 meters, while the inte-
grated solution (red line) had estimated 
errors within 10 meters of the true tra-
jectory. The figure clearly shows all the 
turns along the path. Even Wi-Fi posi-
tioning from known access points (APs) 
requires integration with sensors to 
obtain usable indoor position accuracy. 
Furthermore, the integration of sensors 
with Wi-Fi could help reduce the num-
ber of required APs to achieve a specified 
accuracy level.

Another option involves increasing 
the amount of infrastructure, such as 
using more Wi-Fi APs or installing a 
large amount of WPAN such as RFID’s. 
These solutions can provide very accu-
rate indoor positioning, but the cost to 
deploy and maintain these types of sys-

tems often limits them to more custom-
ized or local systems.

 The use of integrated inertial sensors 
to bridge the gaps in APs is a nice option 
to balance infrastructure costs with high 
accuracy and availability of the naviga-
tion solution.

the Future of Urban 
navigation
If a wired or wireless connection is avail-
able, sensors in the vehicle and a mobile 
device can be integrated, resulting in 
significant gains in navigation accuracy 
when driving in urban environments.

 We performed tests of such a system 
in several major urban cities worldwide 
including Detroit, Toronto, Calgary, 
Houston, Taipei and San Francisco. Fig-
ures 9 and 10 illustrate the results from 
the San Francisco test in an environ-
ment containing tunnels, tall buildings, 
and frequent altitude changes that chal-
lenge a 2D solution.

A mobile device was placed loosely 
on the back seat of the vehicle and had 
a wired connection to the On-Board 

Diagnostics-II (OBDII) communication 
port of the vehicle that transferred vehi-
cle speed information at one hertz with 
a resolution of 0.3 meters per second. 
The device used this speed information 
to decouple the motion and resolve the 
misalignment in real-time. The sensors 
within the device could then be used to 
contribute to the navigation solution.

Figure 9 shows the results of both 
the GPS-only and the integrated solu-
tion through the first tunnel. The GPS 
receiver tried to maintain lock through 
the tunnel, by modeling the motion of 
the vehicle for about 30 percent of the 
tunnel length. Eventually the modeling 
failed, and the GPS began repeating its 
last known location.

Figure 10 shows another path 
through a different tunnel in San Fran-
cisco, which is followed by driving 
through an urban canyon created by tall 
buildings. The GPS receiver is subject to 
more multipath in this downtown sce-
nario. The integrated solution used the 
sensors to help smooth the inaccurate 
GPS position estimates.

EvErywhErE navigation

FIGURE 8  Integrated Wi-Fi positioning system with sensors (yellow pins = Wi-Fi only, red line = 
Wi-Fi + IMU)

FIGURE 7  GPS-only (blue) and integrated (red) height solution for indoor positioning
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The results show that integrated 
vehicle and mobile sensors achieved 
better than 20-meter accuracy in nearly 
all urban environments using phone-
grade MEMS sensors and vehicle speed 
from the OBDII communication port. 
Improved accuracy of less than 5 meters 
is likely when maps and improved 
MEMS sensors are used, potentially 
enabling new applications that go 
beyond consumer navigation, such as 
assisted driving from a mobile device.

improved navigation 
Solutions through Smoothing
Not all applications require immediate 
feedback from the navigation system, 
and some systems that do require imme-
diate feedback can also benefit from 
improved navigation information at a 
later time. Tracking, performance moni-
toring, and indoor wireless surveys are 
just a few examples of such applications. 

In these cases, backward smoothing 
(BS), which makes full use of the infor-

mation logged in both the forward and 
backward directions, can improve the 
navigation performance significantly 
with some latency in the improved navi-
gation solution.

This latency is often defined by the 
application and could range from a few 
seconds to a few hours. Personnel track-
ing may accept latencies of 30 seconds to 
provide an improved navigation solution 
through smoothing. Surveying may accept 
latencies of several minutes or even hours 
depending on the site being surveyed. 

Any application that can accept a 
latency to obtain an improved naviga-
tion solution can use smoothing of the 
forward and backward navigation solu-
tions. The forward and backward solu-
tions can be performed on the same pro-
cessor using multiple cores or in serial 
using the same processing core.

In BS, an optimal smoothed estimate 
of the state vector at epoch k is obtained 
as a combination of forward and back-
ward estimates. The forward estimate is 
obtained by using all measurements up 
to k, in the case of EKF estimates. The 
backward estimate is obtained by using 
all or some of the measurements after k.

Because BS uses more measure-
ments, the resulting estimates are gen-
erally more accurate, and can never be 
worse than the forward filter estimates. 
Several categories of backward smooth-
ing exist including fixed-interval, fixed-
point, and fixed-lag smoothers. In INS/
GNSS applications, BS estimates are 
required for all points in post-mission 
analysis, including those obtained dur-
ing intervals of GNSS signal outages. 
Fixed-interval BS is the most appropri-
ate smoother for bridging these outages. 

For smoothing the EKF solutions, 
the fixed-interval Rauch-Tung-Striebel 
Smoother (RTS) can be used. Unfor-
tunately, not all the techniques that 
apply to EKF-based smoothing apply 
to nonlinear smoothing or a total state 
approach, such as the implementation 
in Figure 4 Minimal configuration for 
tight integration of vehicle sensors with 
MEMS and GNSS.

In this scenario, a two-filter smooth-
er (TFS) is more appropriate. The back-
wards filter can be implemented in 

FIGURE 9  Tunnel trial #1 in San Francisco

FIGURE 10  Tunnel trial #2 in urban San Francisco
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several ways for the TFS, but the most 
intuitive way is to correctly transform all 
the sensor readings to create a situation 
in which the vehicle starts at the end of 
the trajectory and moves to the original 
starting location. 

Another instance of the forward filter 
can then be used with the same system 
model (motion model) but applied to 
the transformed sensor data to provide 
the backward solution. Finally, the two 
filters are blended together based on esti-
mated variances to give the smoothed 
navigation solution.

Conclusion
MEMS inertial technology has pro-
gressed to the point where the combi-
nation of smart integration software 
and robust hardware, enables consumer 
navigation and positioning applications 
where stand-alone wireless techniques 
currently fail.

 Many consumer applications exist, 
with the two mainstream applications 
being for pedestrian and vehicle navi-
gation. Navigation can be real-time or 
post-mission, but in either case accurate 
and seamless solutions will always be 
required by the end-user.

The use of MEMS significantly 
enhances the navigation and positioning 
results of wireless-only solutions. New 
applications will demand more accuracy. 
MEMS sensors may be replaced by bet-
ter hardware. End-user expectations will 
become higher. The road to “everywhere 
navigation” will be long, but marked by 
continuous improvements. 

Manufacturers
The integrated GPS/inertial solution 
designed by Trusted Positioning Inc. 
(TPI), Calgary, Canada, and used in the 
Taipei, Taiwan, trials incorporated an 
LEA-5T GPS receiver, u-blox AG, Thal-
wil, Switzerland; an ITG-3200 3D gyro-
scope triad from Invensense, Sunnyvale, 
California, USA; a BMA150 accelerom-
eter and a BMP085 barometer from 
Bosch Sensortec, Reutlingen, Germany; 
and an HMC5883L 3D magnetometer, 
Honeywell Aerospace, Plymouth, USA. 
The mapping software and imagery was 
Google Earth by Google, Mountain 

View, California, USA. The one-giga-
hertz microprocessor used in the EKF 
and PF integrated implementations is 
the AM3703 from Texas Instruments, 
Dallas, Texas, USA.
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